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In this paper the normal mode expansion technique is employed to obtain numerical 
results for the solution of the slab albedo problem in one-speed transport theory with 
anisotropic scattering. Methods are presented by which one may compute the angular 
distribution of particles anywhere in a slab of tinite thickness for any degree of anisotropy 
of the scattering function. Many numerical examples are given and, from these examples, 
it is demonstrated how the slab albedo problem solution varies with the problem param- 
eters, viz., the degree of anisotropy of the scattering function, the angle of incidence 
of the source beam, the slab thickness and the multiplication factor. 

I. INTRODUCTION 

In the last ten years the singular eigenfunction or normal mode expansion 
technique, as developed by Lafore and Millot [I] and Case [2, 31, has been widely 
applied to one-speed transport problems in systems with plane symmetry. While 
most of the investigations have been limited to problems in infinite or semiinfinite 
media, some authors have applied this technique successfully to problems in 
slabs of finite thickness, assuming that the phase function for single scattering is 
isotropic [4-71. Recently, Kaper has extended these results to anisotropically 
scattering media in a study of the slab albedo problem [8]. 

The applicability of these results to practical problems of particle transport has 
been hampered by the extreme difficulties that are encountered in reducing the 
analytical expressions to numerics. A fundamental difficulty inherent in all slab 
problems is that the coefficients in the eigenfunction expansion do not follow from 
the theory in a closed form but, rather, they are defined by the solution of a set of 
coupled Fredholm integral equations. When the phase function for single scattering 
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is highly anisotropic-a situation often encountered in physical problems-many 
additional computational problems arise. Several of the special functions which 
are well defined by the theory, become exceedingly difficult to evaluate numerically. 
Often, the computer is unable to perform computations with sufficient accuracy 
to give meaningful results from straightforward evaluations of some of these 
special functions from their definitions and a very careful numerical analysis must 
be performed. The fact that the normal mode expansion technique gives rise to 
expressions involving singular integrals, many of which have rapidly varying 
integrands, further complicates its application in practical situations. 

The primary purpose of the present paper, therefore, is to investigate the various 
numerical problems inherent in the singular eigenfunction expansion technique as 
applied to anisotropic transport problems in a slab. Such an investigation is a 
prerequisite if this method is ever to be useful as a practical computational method 
of solving transport problems. In particular, we consider the slab albedo problem, 
which is the fundamental slab problem since the solution to any transport problem 
in a slab may be expressed as a linear combination of various slab albedo problem 
solutions and the simpler infinite medium problem solutions-see, e.g. [9]. 

The present computational study of the slab albedo problem does have an 
immediate practical aspect. Generally, it is impossible to see from the theoretical 
results, even qualitatively, how the solution varies with the problem parameters 
(e.g., the degree of anisotropy of the scattering function, the slab thickness, the 
angle of incidence of the source beam, the multiplication factor). The dependence 
of the solution upon the problem parameters can be found only by a numerical 
evaluation. Finally, the numerical results presented in this paper provide a means 
of checking the validity of certain approximation schemes used in practical prob- 
lems of particle transport in matter, e.g., in neutron transport theory and in 
radiative transfer. 

The general plan of the paper is as follows. After a formulation of the slab 
albedo problem in Section II, we briefly review in Section III the singular eigen- 
function technique and the exact analytical solution to the slab albedo problem as 
given by Kaper [8]. Then, in Section IV, we discuss some of the numerical difficulties 
in the evaluation of this solution and present methods whereby these difficulties 
may be overcome. Finally, in Section V, we give several numerical examples and 
show how the albedo problem solution varies with the problem parameters. 

11. FORMULATION OF THE PROBLEM 

Consider a homogeneous, isotropic, source-free medium which is infinite in the 
y and z directions and occupies the region 0 d x < d in space. The medium is 
surrounded by vacuum on both sides. An azimuthally symmetric beam of particles 
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is incident upon the free surface x = 0. Inside the medium, all particles are assumed 
to travel with the same speed and to be scattered anisotropically. The mean number 
of secondaries per collision is denoted by c. Further, since the medium has been 
assumed isotropic, the angular density of the particles inside the medium is azi- 
muthally symmetric. Thus, if we measure distance, x, in units of the mean free path 
and measure direction by the cosine, CL, of the angle between the velocity vector 
and the positive x axis, the angular distribution, #, of particles inside the medium 
obeys the equation [3] 

a* p ax + +(x, ,.L) = ; ,‘, d,’ f ($9 CL) tix, CL’) (2-l) 

for 0 < x < d, - 1 < p < 1, together with the boundary conditions 

and 

where Y represents the angular distribution of the incident source beam. In 
Eq. (2-l), f is the phase function for single scattering averaged over the azimuthal 
angle, i.e., 

where a’ and 8 are, respectively, the unit vectors in the direction of the velocity 
of a particle before and after a collision, D s (co+ p, cp), GY = (co.+ p’, v’). 
Normalization is such that 

-& r, d/i s: drp‘f(S2’. ~2) = 1. (2-5) 

It will be assumed thatfcan be expanded in a finite sum of Legendre polynomials, 

f(SL’ - SZ) = 5 b,P,(P’ - SL), 
?l=O 

CW 

where the b,‘s are given constants, and b, = 1. Then, using the addition theorem 
for Legendre polynomials, one verifies that 

f ($3 t4 = : U’nW) p&4. 
n-0 

(2-7) 
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It is asked to find the angular density, 4, and the first two moments of 9, i.e., the 
scalar density, p, 

and the net current, j, 

(2-9) 

anywhere inside the slab and at the free surfaces. 

III. THE SLAB ALBEDO PROBLEM SOLUTION 

In this section we briefly outline the method by which the exact solution to the 
slab albedo problem may be derived and summarize the results obtained by Kaper 
PI. 

If the homogeneous transport equation (2-l) is formally written as (&J/&c) = A$, 
the transport operator A is defined by 

(Ad&) = -p-l [d/4 - “z 11, dp’fW, j-4 p&‘)\ (3-l) 

for all v belonging to the domain of A. In the normal mode expansion technique 
one seeks a set of solutions, {yV}, to the eigenvalue problem AT, = Y-~P)~ . From 
Eqs. (2-l), (2-7) and (3-l) it is found that the eigenvalue equation is 

where 

(v - EL) 94% cc) = acv m, P), (3-2) 

(3-3) 

h,(v) = ,: dp’ p,,b’) ?-+‘, El’)* (3-4) 

In these equations we have written cp(v, p), instead of cp,&). 
With the aid of the recurrence relation for the Legendre polynomials it is easily 
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verified that all h, contain h, as a multiplicative factor. Since the eigenvalue 
problem (3-2) is homogeneous, we may normalize the functions 9 by choosing 

I l dpdv,p) = 1. (3-5) 
-1 

With this normalization, the functions h, can be defined alternatively by the re- 
currence relation 

(n + 1) /2,+1(v) - v(2n + 1 - b,c) h&J) + &-I(4 = 0, n = 0, l,..., iV, (3-6) 

and h, = 1. For each n, h, is polynomial of degree it, with 

h,( -v) = (- 1)” h,(v). (3-7) 

We now specify the domain of definition of the transport operator A as the space 
of distributions (generalized functions) with support [ -1, l] on the real axis [lo]. 
We distinguish two cases. 

(i) For v E (- 1, l), the eigenvalue problem (3-2) admits the solution 

cpk 4 = z v _ cL cv !?!&@ + h(v) S(v - p), 

where the generalized functions (v - p)-r and S(v - p) are defined by the func- 
tionals 

and 

respectively, for all test functions @. The symbol $ refers to integration in the 
Cauchy principal value sense. Substitution of Eq. (3-8) into the normalization 
condition (3-5) gives the h function as 

w = w+(v) + ~-(41, (3-l 1) 

where A+ and A- are the boundary values of a function A which is analytic in the 
complex plane cut along the real axis between - 1 and + 1, 

d(z) = 1 - 7 j’, dp z z$ r-1, 11, (3-12) 
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given by the expressions 

A*(v) 3 A(, & io) = 1 - T $’ dp De &~icvD(v,v), -1 <v<l. 
1 (3-13) 

(ii) For v 4 [-1, 11, the normalization condition (3-5) leads to an implicit 
equation (the so-called dispersion relation) for the eigenvalue V, viz., 

A(v) = 0. (3-14) 

Since A is an even function, Eq. (3-14) generally has 2M roots, *vj , j = I,..., M, 
and for the case of c < 1, all of these discrete eigenvalues are real [ll, 121. Cor- 
responding to these discrete eigenvalues Eq. (3-2) yields the following eigensolu- 
tions which are of the regular type, 

v(hvj p) - Cvj D(fvj 3 P) 9 2 “j=r-p ’ j = 1 ,..., AL 

For c > 1, the discrete roots fvj are not necessarily real and, as a consequence, 
many of the functions in the ensuing analysis become complex. To avoid these 
difficulties, we will restrict our investigation to the case of c < 1. 

The use of the eigensolutions of the transport operator to obtain solutions of 
slab transport problems arises from the following important theorem: 

THEOREM. Any function !P defined on the interval 0 < p < 1 which is Hiilder 
continuous [13] on the open interval may be expanded in terms of the eigensolutions 
p)“, 0 < v < 1 and qVj, j = l,..., M, as 

yb) = : %dvi , IU) + 1; dv A(v) ~(v, /.L), 
j=l 

(3-16) 

where the coeficients a,i and A(v) are uniquely determined. 

The proof of this theorem (commonly called the half-range completeness theorem) 
is quite lengthy and will not be given here. We mention only that it is a constructive 
existence proof for the expansion coefficients, see Kaper [8]. 

We now seek the solution of the slab albedo problem in the form 

(3-17) 
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where a+j and A are coefficients to be determined. It is easily verified that each 
term is itself a solution of the homogeneous transport equation (2-l). It is then 
necessary to find coefficients uk5 and A such that the above expansion satisfies the 
boundary conditions (2-2) and (2-3). If such coefficients can be found, then by the 
existence and uniqueness theorems [14] for the one-speed transport equation, the 
expansion (3-17) gives the complete solution to the slab problem. 

Kaper [8] has shown how the half-range completeness theorem and the bound- 
ary conditions (2-2) and (2-3) can be used to obtain a coupled set of Fredholm 
integral equations for the expansion coefficients. First, define 

b&j = a+j f a-jedfvi , 

B*(v) = A(v) i A(-v) edlv, v > 0, 

X(z) = (1 - z)~ exp &- 
I s 

ldp argA+O 
0 

--p-y-- ’ 1 

4a-)) = fi (1 - A). 
I=0 

(3-18) 

(3-19) 

z e P, 11, (3-20) 

(3-21) 

(3-22) 

+ Zl Lf 
’ dv r(v) Do& i”) 

0 v-p - 
(3-27) 

Then the coefficients b*j and B(p) (from which one finds the a+j and A(p) using 
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Eqs. (3-18) and (3-19)) are found by solving the following set of coupled equations, 

(3-28) 

and 

+ ; j; dv v&(v) s: dp ,u”y(p) DO(v, p), k = 0, 1 ,..., M - 1. 
(3-29) 

Thus, since this set of equations admits a unique solution b%, I?&), the albedo 
problem in slabs with anisotropic scattering is solved, at least formally. 

IV. NUMERICAL EVALUATION 

We now turn to a discussion of the main difficulties that are encountered in the 
numerical evaluation of the slab albedo problem solution as found in the previous 
section. 

A. Calculation of the Number of Pairs of Discrete Eigenvalues, M 

The number M is found from the relation 

M = $ [A arg ~+OL , (4-0 

which is readily established from the argument principle [3, 81. Here, 
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V arg ~+Ol)lo+l is the change of the argument of (1+ as the value of ,CL is 
increased continuously from 0 to 1. From Eq. (3-13) we see that Re (1+(O) = 1 
and Im /1+(O) = 0; hence, arg/l+(O) = 0. Furthermore, 

(d&) Im (I+/,=, = -k77cD(O, 0) = &cf(O, 0), 

which is nonnegative. Hence, rlf moves into the first quadrant of the complex 
plane as p increases from 0. As p -+ 1, Re (1+(,u) -+ f co while Im A+@) remains 
finite. Usually, arg rl+ changes very rapidly near p = 1 and for this reason very 
small p increments must be used to follow (1’ as it winds around the origin. A 
typical subdivision of the interval [0, l] which we found useful, is p = O(O.l) 
0.9(0.01) 0.99(0.001)0.999(0.0001)0.9999. 

B. Calculation of the Discrete Eigenvalues, fvj 

To find the M discrete eigenvalues on the positive real axis we must solve for the 
zeros of the function (1, cf. Eq. (3-14). However, for high degrees of anisotropy it 
is very difficult to evaluate (1 from Eq. (3-12), since D(z, p), Eq. (3-3), varies 
extremely rapidly for z > 1. (Typically, a change of lo-lo in z can produce a 10 % 
change in D(z, p)). 

Fortunately, a modification of the dispersion relation (3-14) which avoids such 
problems is easily found. In fact, it may be shown [12] that Eq. (3-14) is equivalent 
with 

or, since D@, p) is an even function of p, with 

1-C 
I 

’ + DOL, 1-4 

0 1 - (/L/z)” = O. 

This form of the dispersion relation is readily evaluated. The function D(p, p), 
which is calculated from Eqs. (3-3) and (3-6), may have several extrema and cha- 
racteristically it often varies rapidly and changes sign near the endpoint p = 1. To 
allow for such behavior we have found it convenient to subdivide the interval [O, l] 
into several subintervals such that the integrand in Eq. (4-3) is monotonic in each 
subinterval, and then to use the Gaussian ten point quadrature rule for integration 
over each subinterval. 

Finally, the M real positive zeros v1 ,..., vM can be quickly found from Eq. (4-3) 
using the method of regula falsi [15]. 

C. Calculation of D(v, p) for v > 1 
The function D(v, EL) is one of the most fundamental functions of anisotropic 

transport theory (it has the constant value 1 in the case of isotropic scattering). 
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This function is defined by Eqs. (3-3) and (3-4) for v belonging to the spectrum of 
the transport operator and - 1 < p < 1. The analytical continuation of D(v, p) 
for v belonging to the whole complex plane is obtained from Eq. (3-3) by defining 
h, from Eq. (3-6). 

For v E [-1, 11, D(v, EL) and h,(v) can be evaluated without any particular 
numerical difficulty from Eqs. (3-3) and (3-6). However, for v appreciably greater 
than unity and for large N it was found to be exceedingly difficult to evaluate 
D(v, p) directly in this way. That such difficulties should arise is not too surprising 
since the n-th term in the sum of (3-3), namely &P&L) h,(v), is a polynomial in Y 
of degree n, and for large n (and v > 1) this term will become very large and change 
quickly. Only for v exceedingly close to the discrete eigenvalues, vj , do the large 
terms in the sum of Eq. (3-3) add together to produce a smooth and slowly varying 
function of p. For very large N( > 20) the accuracy required for vj and the ensuing 
evaluation of Eq. (3-3) is often larger than that available in a computer. 

Since this problem arises as a result of the decomposition of D into a sum of 
terms each of which varies rapidly for large V, it is preferable to define D without 
recourse to the decomposition (2-7) of the scattering function. Thus, instead of 
Eq. (3-2), we write 

and the definition of D becomes 

NV, 14 = I’, WfW, /-4 dv, $1. (4-5) 

For v > 1, we obtain from Eqs. (4-4) and (4-5) the following integral equation for 
the function D, 

D(v, p) = f s’, d/if (ji, /J) 9. 

&is integral equation has a nontrivial solution if and only if v is equal to one of 
the eigenvalues, vi, of the transport operator. The solution defines the desired 
function D(vj , p), cf. [12]. 

After setting v equal to vj , the integral equation (4-6) may be solved most 
conveniently by approximating the integral by quadrature. Then, evaluating 
Eq. (4-6) at the coordinates p1 ,..., ps of the quadrature rule, one obtains a set of 
linear algebraic equations which may be written as 

FAd = d, (4-7) 
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where d is the vector whose components are 

4 = Wj > pi), i = 1 )...) s, 

and A and F are square matrices whose elements are 

A,, = T wi &, , 
vi - Pi 

i, k = 1 ,..., S 

(4-8) 

and 

Fik = f (pk 9 PA i, k = 1 ,..., S, 

respectively. Here, wi is the weight factor associated with the i-th quadrature 
coordinate. F is a symmetric matrix, Fik = Fki , and A is a nonnegative matrix. 
Hence, instead of Eq. (4-6) we consider the equivalent eigenvector problem 

Gd’ = Ad’, 

where G is a symmetric matrix, 

x = 1, (4-11) 

and d’ is the vector 

G = AWFAW = GT (4-12) 

d’ = AVd. (4-13) 

Thus, the values of D(vj , cc) at the points p = pi , i = 1 ,..., S, are found by solving 
the eigenvector problem (4-11) by Householder’s method [16] and then using 
Eqs. (4-8) and (4-13). 

In applying this method, one must choose a specific set of quadrature ordinates 
{pi}. This set must be large enough so as to give D(vi , p) reasonably accurately over 
the entire p-interval, and yet not too large so as to make the solution of eigenvector 
problem (4-11) very time consuming. The latter consideration restricted us to less 
than 100 coordinates in the interval - 1 < p < 1. On the other hand, in the evalua- 
tion of the results of anisotropic transport theory it is found that the various 
special functions of p involved in the theory are needed very accurately near the 
end point ~1 = 1. For these reasons we split the interval - 1 < p ,( 1 into eight 
subintervals, viz., f[O,0.5], j-[0.5,0.9], f[0.9,0.99] and f[0.99, 11, and for 
each subinterval we have chosen the coordinates of a ten point Gaussian quadrature 
rule. This particular choice of 80 ordinates besides generating many values of D 
near p = 1, also gives D(vi , p) at values of p which are immediately useful for 
quadrature of integrals involving the D function. 

So far we have treated only the case of vj sufficiently greater than unity such 
that evaluation of D(vi , p) from Eq. (3-3) becomes very difficult. Quite often 
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though, many of the smaller discrete eigenvalues are very close to unity. Eq. (3-3) 
then can be used to find D without any of the above problems, and at the same time 
a substantial saving in computer time is realized. Whether to employ Eq. (4-l 1) or 
Eq. (3-3) to obtain D(vj , p) obviously depends upon the magnitude of both N and 
vj . 

D. Calculation of X(p) and y(p) 

Several indirect schemes have been used to calculate the X function for the 
isotropic scattering case (e.g., the iteration of a nonlinear integral equation [3]), 
but we have found such schemes present difficulties when the scattering becomes 
very anisotropic. It appears most convenient to evaluate X&), ~14 [0, 11, directly 
from the definition, Eq. (3-20), if special care is taken in evaluating the integral. 
Characteristically, arg/l+Q changes rapidly near the end point p = 1, in particular 
for small c and large M. We have found that splitting the integral in Eq. (3-20) into 
a sum of four integrals over the partial intervals [0,0.5], [0.5,0.9], [0.9,0.99] and 
[0.99, l] and evaluating each integral using ten point Gaussian quadrature, gives 
X(J.L), -1 < p < 0, to five or six significant figures even for highly anisotropic 
scattering functions (N < 60). 

Once X(~L) is known for --I < p < 0, +) for 0 < p < 1 is easily calculated 
from Eq. (3-24). This function, unlike the X function, exhibits very rapid fluctua- 
tions, particularly near t.~ = 1; and since this function appears in many integrands 
of the transport theory result it is important to choose very carefully the points at 
which y is evaluated. Primarily for this reason, we have chosen the tieed intervals 
[0,0.5], [0.5,0.9], [0.9,0.99], [0.99, l] and used their corresponding coordinates 
for the ten point Gaussian quadrature rule to obtain 40 points of the interval 
0 < ~1 < 1 at which we calculate X(-CL> and &). This particular set of ordinates 
is also used throughout the whole of the anisotropic transport theory computa- 
tions. To check the validity of this interval division for integration of the y func- 
tion, the X function can be reevaluated by integrating the y function according to 
the identity [S] 

X(z) = 1; d, -& , z 6 PO, 11. (4-14) 

In all cases for N < 50, the X function obtained in this manner agreed to within 
six significant figures with the X function as calculated directly from Eq. (3-20). 

E. Calculation of cp(z, p) F&L) 

Another quantity which is needed in Eqs. (3-28) and (3-29) is the product 
~(z,~)F,Q,O <p < l,forzE[--l,O]andz = vi. 
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For z E [-1, 01, the definition (3-27) of Fs involves both a Cauchy principal 
value integral and the X function. However, Eq. (3-27) may be rewritten as 

F,Q = & ID’“’ ‘1 ~;‘z’ ‘) (z - p) x&) + D(Z, z) x(z) , 

+ (z - p) Do@, p) f: dv $$ 

+ (z - P) 1; dv YWP0(Z9 4 - DO(z, CL)1 
V-P I* 

From Eqs. (4-14) and (3-26) we see that the first and third terms in the right side 
of the above expression cancel. Then, multiplying by (cz/2)D (z, p)/(z - CL) and 
using Eqs. (3-8) and (3-25) we find for z E [ - 1, 01, 

=- 7 jDflz; x(z) + j: dv Y(v)[Do(z9 ‘1 - D”(z, ,dl I, 
V--P 

O,<p<l. 
(4-16) 

This form now involves only regular integrals and X&) for - 1 < p < 0. 
For z = vi ,j = 1 ,..., M, the definition (3-27) of F, is also difficult to evaluate 

numerically because of the occurrence of D(vj , 3 v.). Fortunately, it is possible to 
modify Eq. (3-27) so that it contains only the quantity D(vj , p), -1 < p < 1, 
which can be found from the method of Part C of this section. Using the definition 
(3-26) of the function Do and the identity (4-14) one may verify the relation 

or, equivalently, 

cp(z, p) F&) = 7 +-+ //’ dv ‘(‘; ‘1”1’) - f: dv YWW7 El) - m 41 
0 V-P I 

(4-18) 
which holds for 0 < ~1 < 1. 

F. Calculation of the Expansion Coeficients 

Before we can solve numerically Eqs. (3-28) and (3-29) for the coefficients bij 
and B+(v), 0 < v < 1, the incident distribution Y&) of Eq. (2-2) must be specified. 
We have chosen a delta function incident source, i.e., Y&) = S& - po), p. > 0. 
The solution of the albedo problem for any other incident source can readily be 
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obtained by convoluting the source function, Y, with the solution for the delta func- 
tion source. 

With this particular choice of the incident source function Eq. (3-28) may then 
be written 

However, this equation and Eq. (3-29) are not very amenable to numerical analysis 
since the first term on the right hand side of Eq. (4-19) contains the quantity 
q+, pO) which is highly singular. If instead of using B+ , a new pair of coefficients 
B* is introduced such that 

O<p<L (4-20) 

Eq. (4-19) can then be cast into a form which does not contain any singular func- 
tions. We introduce the following abbreviations: 

O<v<l, (4-23) 

(4-24) 

ZZZ ' dv &k(V) - HLtk&O) 
, 

0 v - PO 

(4-25) 

581/6/2-10 
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and 

J&) = f, dv k+i!d + 
v - PO 

‘E;$;f ;($‘) , 
2 

VENINGA 

ZZZ ’ dv L*tb ‘> - L&, h) 
0 v - PO I 

O<p<l. (4-26) 

With these definitions Eqs. (3-29) and (4-19) may be written in terms of B+ as 

5 b*jpzt,j rt ,: dv &t(v) &tv) = ytpo&ok - J+,l, k = 0,l )...) (M - 1) 
j=l (4-27) 

and 

respectively. All of the quantities defined in Eqs. (4-21) to (4-26) are readily evalu- 
ated, except perhaps L&, v) which requires the evaluation of an integral of a 
singular function (i.e., ~(1-1, 0). However, use of Eqs. (3-S), (4-14) and (3-24) gives 

(4-29) 
Finally, to solve Eqs. (4-27) and (4-28) for b*$ and & , once the quantities 

pfki , p,ti , f&k, -b, Jik 3 and J* have been found, we approximate the integrals 
in these equations by quadrature. If (PC}, i = 1 ,..., S represents the set of quadrature 
coordinates for the interval [0, 11, and wi is the weight function for the i-th coor- 
dinate, then the integral equations (4-27) and (4-28) can be approximated by the 
following set of 2(M + S) linear algebraic equations: 

$ bijp+l,j zt f w(b) H&i) &t%) = Y&O&O~ - -hkl, k = 0,l ,..., (M - 1) 
j=l i=l 

and 
(4-30) 

B&Q) + E bztjP+j f 5 W(VZ) L&i 5 VZ) = FY@o) J&-d, i = 1 ,..., S, 
j-1 14 (4-3 1) 

which may be solved for the 2(M + S) unknowns b*, , j = 1 ,..., M and B&J, 
i=l ,..., S, e.g., using the method of Crout [17]. 
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Once the quantities bs and II have been calculated, the expansion coefficients, 
ah3 and A, are readily obtained from them. From Eqs. (3-18), (3-19), and (4-20) 
we have 

a+j = ii@+3 + b-A 
a-3 = s(b+j - b-j) e-“‘l, 

44 = wd[ 2~~~;,~;~~+ OIO], O<p<l 

and 

A(-p) = W(p) O,(p) e+Q, O,<p<l, 

where we have defined 

(4-32) 

(4-33) 

(4-34) 

(4-35) 

and 

O.&h) = +{B+Cp) - BAJA)} e-+. (4-37) 

G. Calculation of the Angular and Scalar Densities and Net Current 

The angular distribution for the slab albedo problem in terms of the coefficients 
a&j and A is given by Eq. (3-17). For computational purposes it is convenient to 
separate the flux into the “continuous” and “discrete” components, i.e., 
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The discrete term s,I& presents no computational difficulties, and the terms #cI and 
#E2 likewise are easily evaluated. The third continuum term, +G3, while quite 
straightforward for TV < 0, cannot be evaluated numerically for ~1 > 0 since the 
integrand in Eq. (4-43) contains a product of two singular functions, viz., ~(v, pO) 
~(v, ,u). However, it can be shown [12] that tic3 may be simplified to 

~c& i-4 = YCPO) G(x, PFL, P) - G(x, /A PO) + e-z,,isOL _ ~ 
P - PO 

) 
09 p > 0, (4-44) 

where we have defined 

G(x, p, po) = g f dv W(v) e-“l” * D&o 9 I4 -xILLg 
0 + “‘) wolo) D(po 3 PO) e ’ c4-45j 

The last term in the expression (4-44) represents the uncollided flux - that is, the 
source particles which have penetrated a distance x into the slab without interacting 
with the medium. For the purposes of computation we can ignore this term since 
we are really interested only in the angular density established in the slab by the 
particles which have undergone collisions. Nevertheless, we should keep in mind 
that the complete solution to the slab albedo problem contains this attenuated 
delta function. 

Finally, the scalar density and net current are determined from the zeroth and 
first angular moments, respectively, of Eq. (4-38). From Eq. (3-5) and Eqs. (4-38) 
to (4-43) one finds that the scalar density, p, is given by 

p(x) = 5 [u+ie-z’yj + u-je2’yj] 
j=l 

+ jl dv W(v)[O1(v) e-xl” - O,(v) e-(d-%)/v]. (4-46) 

The first angular moment of the eigenfunction ~(v, p) is found from Eq. (3-2) 
and the orthogonality properties of the Legendre polynomials. Combining the 
result with Eqs. (4-38) to (4-43) one finds that the net current, j, is given by 

+ 1: dv vW(v)[O,(v) e-+ - O,(v) e-(r-z)/V]\. (4-47) 
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V. NUMERICAL EXAMPLES 

On the basis of the analysis of the preceding section computer programs have 
been developed to calculate the angular density, scalar density and net current of 
particles everywhere inside a slab of finite thickness. In this section we present 
several numerical examples. Specifically, we show how the reflected and transmitted 
fluxes (i.e., the angular densities at the free surfaces x = 0 and x = d, respectively) 
vary with the problem parameters, viz., the degree of anisotropy, N, of the scat- 
tering function, the angle of incidence, B,, = cos-l p0 , of the source beam, the slab 
thickness, d, and the multiplication factor, c. 

To study the effect of anisotropic scattering it is necessary to specify a particular 
phase function for single scattering, f(SL’ . Q), cf. Eq. (2-6). For our studies we 
have used the fictitious function 

f”+(Q’ * sq = w (1 + Q’ * Sz)N, N = 0, 1, 2 ,.... (5-l) 

As N increases, fN+ becomes concentrated nearer to ~2’ . P = 1, corresponding 
to predominantly forward scattering. While this scattering function is strictly a 
mathematical invention,fN+ . is not at all unlike scattering functions encountered in 
physical situations. For example, in radiative transfer the scattering functions are 
usually monotonic increasing functions of S2’ * P (neglecting small backscatter 
effects) which are highly peaked in the forward direction. In many cases, the func- 
tion f Nf can be used as a good approximation. Mathematically, the function fN+ 
has the advantage that it can be expanded exactly in terms of the first N + 1 
Legendre polynomials, 

f N+(S2’ . Q) = 5 bnNP,(S2 . Q), 
n=a 

where the coefficients, bnN, can be calculated from the recurrence relation 

(5-3) 

with b,N = 1 (N = 0, 1, 2,...) and b nN = 0 if n > N. In Fig. 1 the scattering 
function f N+ is shown for various degrees of anisotropy. 

Finally, we must mention that in all the following examples the incident distribu- 
tion Y of Eq. (2-2) is not simply 6(~ - p,,) which was used in the analysis of the 
previous section; rather, we have used 

m.4 = @77%Y & - Pa). (5-4) 

This particular normalization represents a source beam of constant unit strength 
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COSINE OF THE SC?ATTE’:lNG ‘:N&: g.4’ 
10 

FIG. 1. The scattering function f N+ for various degrees of anisotropy. 

incident on the slab surface, i.e., a unit incident current. In most experimental 
situations the source beam strength is indeed kept constant regardless of the angle 
of incidence, p0 . 

A. Variation with Degree of Anisotropy 

In Figs. 2 and 3 we show for two different source angles, 0, = cos-l pLo, the 
reflected and transmitted fluxes of a slab of one mean free path thickness and a 
multiplication factor c = .95 for various degrees of anisotropy of the scattering 
function f N+. 

We immediately see that the reflected flux rapidly decreases at all values of -p 
as the degree of forward scattering increases, and more so as the source angle, 19~ , 
grows smaller. This behaviour is expected since for the particles to be reflected they 
must change from their initial direction by at least an amount c.L,, = cos 8, and 
such a change in direction obviously becomes more difficult both as the scattering 



SLAB ALBEDO PROBLEM 307 

1 

Reflected Flux $ (0.K) Transmitted Flux. $ (d.Vl 

-1.0 -.* -.e -.4 -.* 0 .2 .4 .6 .B 
COSINE OF ANGLE.!J 

0 

FIG. 2. Reflected and transmitted angular distributions of the slab albedo problem for 
various degrees of anisotropy. 

becomes more forward and as p0 increases. Further, the reflected fluxes generally 
decrease as the emergent angle approaches the perpendicular direction. The 
principal reason for this is that there is a greater probability for a small change in 
direction due to collisions than for a large change from the incident direction, 
particularly as the probability of forward scattering increases. Hence there should 
be more particles escaping in directions which require only a relatively small 
change in direction, namely in the direction p 2 0. Also we will shortly see that the 
presence of the free surface at x = d contributes to this effect. Finally we notice 
this increase of the reflected flux as p increases usually levels off and often decreases 
slightly as p + 0. To understand this effect, which in radiative transfer is known 
as “limb darkening,” consider a particle at some distance x in the slab moving in a 
negative direction p1 towards the surface x = 0. The probability that it will reach 
the surface without suffering another scattering collision or being absorbed is 
exp(--x/&-recall that in the one-speed model, all distances are measured in units 
of mean free path. Thus, as pr becomes smaller, there is less chance that the par- 
ticle will emerge without another change in direction, and for small p1 , this effect 
is very important. Moreover it is seen that this mechanism becomes even more 
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COSINE OF ANGLE, ,, 

FIG. 3. Reflected and transmitted angular distributions of the slab albedo problem for 
various degrees of anisotropy. 

important as the scattering becomes more and more predominant in the forward 
direction. 

For the transmitted flux, the general trends becomes much more complex and 
difficult to explain qualitatively. From Figs. 2 and 3 we see the transmitted fluxes 
generally increase as the forward scattering functioniN+ becomes more anisotropic. 
This arises simply because for thin slabs the particles escape after only a few 
collisions. Indeed, as N increases we see the transmitted flux is peaked nearer to 
the incident angle, since the particles do not deviate as much from the source 
direction in only the few collisions they suffer before escaping. The transmitted 
distribution also become more anisotropic as N increases. Further, these distribu- 
tions generally display a decrease near p = 0 (parallel to the surface) probably for 
the same reasons the reflected flux did near p = 0. 

Finally, we mention the fact that Figs. 2 and 3 provide a means of checking the 
numerical results since both the reflected and transmitted flux are unaltered when 
the directions of incidence and emergence are interchanged, as required by 
Helmholtz’s principle of reciprocity [ 181. 



SLAB ALBEDO PROBLEM 309 

B. Variation with Slab Thickness 

In Fig. 4 we have plotted the reflected and transmitted fluxes for several slabs of 
different thicknesses, all with the properties,fN+, N = 10, c = 0.95, B. = 60°. The 
reflected flux, as would be expected, increases as d increases since with larger d 
there is a smaller probability that the particles will leak through the slab. Also, as 
d increases the reflected flux falls off less sharply towards the perpendicular direc- 
tion. This phenomenon is readily understood from the following argument. As d 
increases, the average number of collisions before a particle escapes increases; 
hence, the particles can deviate more from their initial direction and may emerge 
at the surface x = 0 with a larger negative angle. 

1 
Reflected flux. $ (0.P) 

I 

Transmitted Flux,$(g.!J) ! 

Degree of Anisotropy. N ~10 

Multiplicotron Factor, c-.95 

Source Angle, y,,. 6?' 
I 1 I . . , , 

-1.0 -.6 -,6 -4 -.2 0 .2 .4 ,6 .6 1.0 

COSINE OF ANGLE, ,, 

FIG. 4. Reflected and transmitted angular distributions of the slab albedo problem for various 
slab thicknesses, d. 

The transmitted flux initially increases as d increases but then quickly begins to 
decrease as d becomes still larger. For very small d, very few particles are removed 
from the source beam and most of the particles are transmitted unaltered (the 
transmitted delta source is not shown in any of these figures; only the collided 
flux is displayed). As d increases, more particles are removed from the beam and 
the transmitted flux increases. However, as d increases further another mechanism 
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becomes important. At any point in the slab, a particle always has the greatest 
probability of escaping without suffering another collision when it is moving in a 
direction perpendicular to either of the free surfaces (i.e., p = +I or ~1 = -I), 
Eventually, as multiple collisions become more likely as d increases, more particles 
will be absorbed or scattered into a direction of negative p (hence the general 
decrease of the transmitted flux); and the particles traveling in the direction p = 1 
have the greatest chance of reaching the free surface at x = d without being back- 
scattered or absorbed (hence the transmitted flux attains it largest value at p = 1). 

C. Variation with Source Angle 

In Figs. 5 and 6 we show how the reflected and transmitted fluxes vary with the 
source angle, 0, , for two different cases (c = 0.95 and 0.6, respectively) with the 
same scattering function and slab thickness. We see that the reflected flux rapidly 
increases for all ~1 as 0, increases. This increase is due to two effects. First, 
for large 4, the source delta function must traverse a distance significantly 
greater than the slab thickness, d, namely djcos 8, , and hence far more particles 
will be removed from the source beam than for small 0, . Secondly, fewer scat- 
tering collisions are required to turn the particle into a negative p direction as 8, 

-10 -8 -6 -4 -.2 0 -2 .4 .6 ..9 10 

COSINE OF ANGLE.k 

FIG. 5. Variation of the reflected and transmitted angular flues with the incident source 
angle, BO , for the slab albedo problem. 
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is increased and hence more particles will be reflected. The shape of reflected flux 
distributions, (NO, EL) increases as ~1 increases form - 1, and then levels off near 
p = 0) has been discussed in part A. 

The transmitted flux distributions are seen to become more displaced in the 
perpendicular direction as 0, decreases. This simply reflects the fact that the trans- 
mission probability is greatest in the direction p = 1, and as 19, decreases fewer 
collisions are needed to attain this direction. Because in these examples the slabs 
are so thin that generally very few collisions have occurred in the slab before a 
particle escapes the transmitted distributions have their maxima between cl,, and 1. 
For thicker slabs, more collisions occur and the position of the maxium will shift 
more from the angle of incidence towards the perpendicular direction. 

As with Figs. 2 and 3, the principle of reciprocity may again be invoked to 
check the numerical results for the reflected and transmitted fluxes represented in 
Fig. 5 and Fig. 6. 

COSINE OF ANGLE, Ii 

FIG. 6. Variation of the reflected and transmitted angular fluxes with the incident source 
angle, BO, for the slab albedo problem. 
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D. Variation with the Multiplication Factor 

Again reference is made to Figs. 5 and 6. The most obvious effect produced by 
decreasing c is to decrease the transmitted and reflected distributions. This decrease 
reflects the fact that we have increased the probability of absorption each time the 
particle has a collision. Hence fewer particles survive removal from the source 
beam and the subsequent collisions. Further, we notice that the reflected flux 
decreases more rapidly for decreasing p when c is decreased - a result of the in- 
creased absorption since fewer particles can survive the collisions required to turn 
them in the p = -1 direction. 

‘i- - 

I 6 

I , 
I 

0 

ncldent Source Angle 0,~ 

4ultiplic. Factor. c *.Qf 

Scattering Function, f N’ 

Degree 01 Anisotropy, Ns 

SIoD Thickness, d * 5 

- .2 ,4 -6 /o 
COSINE OF ANGLE, P 

FIG. 7. The angular density for the slab albedo problem at various positions in the slab. 

As a final example we show, in Fig. 7, the angular density of particles at several 
positions inside a slab of 5 mean free paths thickness, with the properties fN+, 
N = 10, c = 0.95, 8, = 60°. The value of p at which the angular density attains 
its maximum increases as x increases; after a few mean free paths in the slab 
(x > 3) the angular flux becomes a monotonic increasing function of p. This shift 
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of the maximum towards the p = 1 direction for increasing distance in the slab 
simply reflects the fact that the “real path” distance the particle has traveled to get 
to a particular point in the slab, is least for the forward direction and, hence, the 
probability of absorption while traveling to that point is least. Notice also how 
quickly the angular flux for p > 0 in the forward direction is established near the 
source surface, x = 0. 

Further numerical examples and more details of the computational techniques 
employed in this research including listings of the computer programs can be found 
in a recent report [12]. 
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